Progress in Resummation: Simplicity in All Orders QCD Dynamics

lan Moult
Berkeley and LBNL

Limits of Gauge Theories

• Gauge theories simplify sufficiently in kinematic limits that they can often be understood to all orders in α_s :

- Many of these correspond to limits of physical interest at the LHC! Jet substructure, event shapes, threshold, q_T , BFKL....
- Remarkable continued progress in better understanding this simplicity and in phenomenological applications at colliders.

QCD@LHC 2019 July 16, 2019 2 / 42

Outline

Precision Hadronic Event Shapes:
 From Drell-Yan to Dijets at NNNLL

• Towards Simplicity in Jet Substructure: Higher Loops and Higher Points

• Extending Resummation Beyond Leading Power

QCD@LHC 2019 July 16, 2019 3 / 42

Precision Hadronic Event Shapes: From Drell-Yan to Dijets

[Gao, Li, IM, Zhu]

Hadronic Event Shapes

- One of the most basic objects of study in QCD are event shapes.
- Well understood in e^+e^- , with results to N³LL +NNLO.

[Abbate, Fickinger, Hoang, Mateu, Stewart]

- Hadron colliders offer a much richer environment:
 - Non-trivial color flows.
 - Factorization violation.
- Progress with colored final states beyond NLL difficult due to the very complicated soft dynamics of multiple colored directions.

QCD@LHC 2019 July 16, 2019 5 / 42

A Success Story: q_T

• In the last several years, q_T for color singlet production was computed to N³LL +NNLO.

- Can we extend this success from q_T to dijet event shapes?
- Key is in choosing a "nice" dijet event shape!

QCD@LHC 2019 July 16, 2019 6 / 42

Choosing the Right Observable

- While many event shape observables have been proposed at hadron colliders, these typically suffer from two features that prevent their use as precision observables:
 - Large underlying event sensitivity (factorization violation)
 - Complicated observable definitions for multiple soft emission (e.g. |E_T|, N-jettiness, ...)

 Would like to overcome this to have precision event shapes at the LHC.

QCD@LHC 2019 July 16, 2019 7 / 42

Simplifying Dijet Event Shapes

Consider the Transverse Energy-Energy Correlator (TEEC)

$$\frac{d\sigma}{d\cos\phi} = \sum_{a,b} \int d\sigma_{pp\to a+b+X} \frac{2E_{T,a}E_{T,b}}{|\sum_{i}E_{T,i}|^2} \delta(\cos\phi_{ab} - \cos\phi)$$
[Basham, Brown, Ellis, Love]

- In the $\tau \equiv \sin^2((\pi \phi)/2) \rightarrow 0$ limit, it is a dijet observable.
- Will show that the TEEC exhibits a remarkable perturbative simplicity, and is quite insensitive to UE.

July 16, 2019 8 / 42

Kinematics

- In the au o 0 limit, au is related to the momentum perpendicular to the plane in which the Born dijets lie.
- Particles out of the plane generated by soft emissions recoiling the plane, or collinear splittings.

• The TEEC is the natural generalization of q_T to dijets: recoiling vector \rightarrow recoiling plane.

QCD@LHC 2019 July 16, 2019 9 / 42

Factorizaton Formula

Factorization for the TEEC in the back-to-back limit:

• Factorization for the TEEC in the back-to-back limit:
$$\frac{d\sigma^{(0)}}{d\tau} = \frac{1}{16\pi s^2 (1 + \delta_{f_3 f_4}) \sqrt{\tau}} \sum_{\text{channels}} \frac{1}{N_{\text{init}}} \int \frac{dy_3 dy_4 p_T dp_T^2}{\xi_1 \xi_2} \int_{-\infty}^{\infty} \frac{db}{2\pi} e^{-2ib\sqrt{\tau}p_T}$$

$$\operatorname{tr}\left[\mathbf{H}^{f_{1}f_{2}\to f_{3}f_{4}}(p_{T},y^{*},\mu)\mathbf{S}(b,y^{*},\mu,\nu)\right]\cdot B_{f_{1}/N_{1}}(b,\xi_{1},\mu,\nu)\,B_{f_{2}/N_{2}}(b,\xi_{2},\mu,\nu)J_{f_{3}}(b,\mu,\nu)\,J_{f_{4}}(b,\mu,\nu)$$

- Combines a wealth of interesting functions
 - H: $2 \rightarrow 2$ Hard Functions (NNLO) [Anastasiou, Bern, De Freitas, Dixon, Glover, ...]
 - B: TMD PDFs (NNLO) [Catani, Echevarria, Gehrmann, Grazzini, Lubbert, Scimemi, Vladimirov, ..]
 - J: (Moment of) TMD fragmentation function (NNLO)
 - [Echevarria, Scimemi, Vladimirov, ..] S: New TEEC Soft Function (NNLO)
- And their anomalous dimensions
 - [Almelid, Gardi, Duhr] Soft Anomalous Dimension (3-loops)
 - Rapidity Anomalous Dimension (3-loops) [Li, Neill, Zhu]
 - Collinear Anomalous Dimensions (3-loops) [Moch, Vermaseren, Vogt, ...]
 - Cusp Anomalous Dimension (4-loops) [Korchemsky, ..., Henn, ..., Moch, Vermaseren, Vogt, ..
- Remarkable example of factorization (in both physics and sheer work)!

QCD@LHC 2019 July 16, 2019 10 / 42

Soft Function

Simplicity lies in the TEEC Soft Function

$$\mathbf{S}(b, y^*) = \langle 0 | T[\mathbf{O}_{n_1 n_2 n_3 n_4}(0^{\mu})] \overline{T}[\mathbf{O}_{n_1 n_2 n_3 n_4}^{\dagger}(b^{\mu})] | 0 \rangle$$

• Expanding perturbatively as $\mathbf{S} = \sum (\alpha_s/4\pi)^n \mathbf{S}^{(n)}$

$$\begin{split} \mathbf{S}^{(1)}(y^*, L_b, L_{\nu}) &= -\sum_{i < j} \left(\mathbf{T}_i \cdot \mathbf{T}_j \right) S_{\perp}^{(1)} \left(L_b, L_{\nu} + \ln \frac{n_i \cdot n_j}{2} \right), \\ \mathbf{S}^{(2)}(y^*, L_b, L_{\nu}) &= -\sum_{i < j} \left(\mathbf{T}_i \cdot \mathbf{T}_j \right) S_{\perp}^{(2)} \left(L_b, L_{\nu} + \ln \frac{n_i \cdot n_j}{2} \right) + \frac{1}{2!} \left(\mathbf{S}^{(1)}(y^*, L_b, L_{\nu}) \right)^2 \end{split}$$

- Remarkably, $S_{\perp}^{(i)}$ is the *i* loop Color Singlet q_T soft function!!
- Dipole structure preserved at level of cross section.
- First analytic 2-loop dijet soft function.
- Simplicity arises from the fact that the measurement is perpendicular to the plane of the Wilson lines \implies The uniquely simple dijet soft function.

July 16, 2019 11 / 42

Verification of Singular Behavior

• Factorization formula correctly predicts singular behavior of NLO $pp \to 3$ jet cross section in all partonic channels.

$$\begin{split} \frac{d\sigma^{(0)}}{d\tau} &= \frac{1}{16\pi s^2 (1+\delta_{f_3f_4})\sqrt{\tau}} \sum_{\text{channels}} \frac{1}{N_{\text{init}}} \int \frac{dy_3 dy_4 p_T dp_T^2}{\xi_1 \xi_2} \int_{-\infty}^{\infty} \frac{db}{2\pi} e^{-2ib\sqrt{\tau}p_T} \\ & \text{tr} \left[\mathbf{H}^{f_1f_2 \to f_3f_4}(p_T, y^*, \mu) \mathbf{S}(b, y^*, \mu, \nu) \right] \cdot B_{f_1/N_1}(b, \xi_1, \mu, \nu) B_{f_2/N_2}(b, \xi_2, \mu, \nu) J_{f_3}\left(b, \mu, \nu\right) J_{f_4}\left(b, \mu, \nu\right) \\ \end{split}$$

• Analytic control of IR logarithms for NLO $pp \rightarrow 3$ jets.

QCD@LHC 2019 July 16, 2019 12 / 42

NLO+NNLL Resummation

First dijet event shape at NNLL:

- Resummation has a large effect.
- To improve perturbative behavior, important to go to NNNLL.

QCD@LHC 2019 July 16, 2019 13 / 42

NNNLL Resummation

• At NNNLL we encounter for the first time in a physical observable a quadrupole color correlation.

[Almelid, Duhr, Gardi]

First (preliminary) results at NNNLL:

- \bullet Must be matched to NNLO 2 \rightarrow 3 amplitudes. See Talks by Abreu, Badger
- e^+e^- level theoretical precision for hadron collider event shapes!

QCD@LHC 2019 July 16, 2019 14 / 42

Underlying Event

- Relation to q_T saves the TEEC in another way: Underlying Event does not systematically recoil the plane \implies effects minimal
- Other hadronic event shapes often have $\mathcal{O}(1)$ factorization violation.

- UE for TEEC well modeled by adding a uniform energy distribution.
- Can one rigorously prove that this is a power correction (or $1/N_c$ suppressed, or perturbative, or)?

July 16, 2019 15 / 42

Glaubers and Factorization Violation

- With colored final states, naive picture of factorization is (generically) violated. [Collins, Catani, Forshaw, ...]
- We have now concretely hit a perturbative accuracy where this must be understood. Factorization formula will explicitly fail.
- Factorization violation can be incorporated using Glauber operators.

 This is an opportunity: The remarkable simplicity of the TEEC provides a playground to concretely address these issues, and the observed insensitivity to UE provides hope that they can be incorporated.

QCD@LHC 2019 July 16, 2019 16 / 42

Glaubers and Factorization Violation

- The TEEC can be defined for three distinct final states
 - Dijets (factorization violated)
 - $Z/W/\gamma$ + Jet (factorization violated?)
 - Drell-Yan $(Z \rightarrow II)$ (factorization proven)

- All three now available at N³LL.
- Allows for precise probe of color flows and factorization violation in a hadron collider environment!

 Hopefully we can learn general lessons about factorization and its violation.

> July 16, 2019 17 / 42

Towards Simplicity in Jet Substructure: Higher Loops and Higher Points

[Dixon, IM, Zhu] [Chen, Dixon, Luo, IM, Yang, Zhang, Zhu]

Jet Substructure

 Jet Substructure has emerged as a primary way to look for new physics, and probe QCD at the LHC.

- Basic goal of jet substructure is to understand the seemingly complicated correlations in energy flow in a QCD jet.
 - Can we draw inspiration from Conformal Field Theory (CFTs) to find simplicity ?

QCD@LHC 2019 July 16, 2019 19 / 42

Back to Basics: Correlation Functions

 The natural observables in a (C)FT are correlation functions. e.g. Four point correlator.

$$\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4)\rangle = \frac{g(u,v)}{x_{12}^{2\gamma_{\phi}}x_{34}^{2\gamma_{\phi}}}$$

$$u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2} \qquad v = \frac{x_{23}^2 x_{14}^2}{x_{13}^2 x_{24}^2} \qquad \text{Note: } x^\gamma = 1 + \gamma \log x + \frac{1}{2} \gamma^2 \log^2 x + \cdots$$

 In a scattering experiment, these operators are placed at infinity, and integrated over time. Primarily measure energy:

$$\mathcal{E}(\vec{n}) = \int_{0}^{\infty} dt \lim_{r \to \infty} r^{2} n^{i} T_{0i}(t, r\vec{n})$$

 The simplest observables are the correlation functions themselves: $\langle \mathcal{O}\mathcal{E}(\vec{n}_1)\mathcal{E}(\vec{n}_2)\cdots\mathcal{E}(\vec{n}_N)\mathcal{O}^{\dagger}\rangle$

> July 16, 2019 20 / 42

Energy Correlators

 The simplest observable is the two-point correlator: Energy-Energy Correlator. It can be written in a more familiar way as

$$\frac{d\sigma}{dz} = \sum_{i,j} \int d\sigma \ \frac{E_i E_j}{Q^2} \delta \left(z - \frac{1 - \cos\chi_{ij}}{2}\right)$$
 [Basham, Brown, Ellis, Love]

Naturally generalizes to hadron colliders, and to multi-point correlators.

• In the collinear limit, it is a jet substructure observable, with very interesting properties.

> July 16, 2019 21 / 42

Energy Correlators on Youtube

 The EEC has its own Youtube Video by Lance Dixon: https://www.youtube.com/watch?v=WVC1ygsjZNc

Theorists love giant formulas (even more than coffee)

4,595 views

Energy Correlators in a Conformal Field Theory

• Consider an *N*-point Energy-Energy Correlator in a conformal field theory. Let *z* denote the largest angle:

The differential cross section is given by

$$\frac{d\sigma}{dz \ dShape} = C_{Shape}(z = 1, \alpha_s) z^{\gamma_{N+1}(\alpha_s)-1}$$

- $C_{\mathsf{Shape}}(z=1,\alpha_s)$ is a (potentially complicated) function describing the shape dependence for a "unit shape".
- $\gamma_{N+1}(\alpha_s)$ is the twist-two spin N+1 spacelike anomalous dimension (known at 3 (and for some N, 4) loops in QCD). [Hofman, Maldacena]

[See also: Korchemsky; Kologlu, Kravchuk, Simmons Duffin, Zhiboedov]

QCD@LHC 2019 July 16, 2019 23 / 42

Energy Correlators in QCD

• We can derive a factorization formula for the N-point correlator in QCD:

$$\Sigma(z, \ln \frac{Q^2}{\mu^2}, \mu) = \int_0^1 dx \, x^N \vec{J} (\ln \frac{z x^N Q^2}{\mu^2}, \mu) \cdot \vec{H}(x, \frac{Q^2}{\mu^2}, \mu)$$

 The jet function satisfies the renormalization group equation:

$$\frac{d\vec{J}(\ln\frac{zQ^2}{\mu^2},\mu)}{d\ln\mu^2} = \int_0^1 dy \, y^N \vec{J}(\ln\frac{zy^N Q^2}{\mu^2},\mu) \cdot \widehat{P}_T(y,\mu)$$

- At LL, have exact correspondence with CFT result (up to running coupling): $\vec{J}_{LL}^T = (J_q, J_g) \exp \left(\frac{\gamma(N+1)}{2\beta_0} \ln \frac{\alpha_s(z^{1/N}Q)}{\alpha_s(Q)} \right)$
- In a non-CFT, beyond LL, derivatives $\gamma'(N+1)$, $\gamma''(N+1)$, also enter.

July 16, 2019 24 / 42

The Two Point Correlator

[Dixon, IM, Zhu]

To NNLL in One Slide

- To achieve NNLL (single log counting), one needs all anomalous dimensions at 3 loops, constants at two-loops:
 - Anomalous dimensions can be extracted from [Mitov, Moch, Vermaseren, Vogt, ...]
 - Computed EEC jet functions at NNLO e.g.

$$\begin{split} j_2^g &= n_f^2 \left(-\frac{8}{15} \zeta_2 + \frac{2344}{1125} \right) + C_F n_f \left(4\zeta_3 + \frac{14}{5} \zeta_2 - \frac{1528667}{108000} \right) \\ &+ C_A n_f \left(\frac{44}{5} \zeta_3 - \frac{127}{25} \zeta_2 + \frac{68111303}{1620000} \right) + C_A^2 \left(76\zeta_4 - \frac{1054}{5} \zeta_3 - \frac{2159}{75} \zeta_2 + \frac{133639871}{810000} \right) \end{split}$$

- Control of $\frac{1}{z}$, $\frac{\log z}{z}$, $\frac{\log^2 z}{z}$ at three loops, plus tower of logarithms.
- First substructure observable known at this order.

```
\begin{split} \Delta \Sigma(z) &= \frac{\pi c^2}{4\pi} \frac{S^2 r}{2\pi} \\ &+ \frac{(2\pi)^2}{4\pi} \left[ C_4 Gr \left( -\frac{50 C_6}{3} + k_4 - \frac{167 \log z}{15} \right) + \frac{15399}{677} \right) + C_7 \pi f \left( \frac{51 \log z}{160} \right) - \frac{6913}{990} \right) \\ &+ C_7^2 \left( \frac{80 C_6}{3} - k_4 - \frac{254 \log z}{4} \right) - \frac{163 C_6}{23} \right) \\ &+ \left( \frac{2\pi}{3} \right)^2 \left[ C_4 Gr \pi f \left( -\frac{196 C_6}{3} + \frac{186 C_6}{3} - \frac{118 C_6}{3} + \left( -\frac{186 C_6}{3} + \frac{18C_6}{3} + \frac{664 1277}{34800} \right) \log (z) \right. \\ &+ \left( \frac{162 C_6}{3} - \frac{162 C_6}{3} - \frac{186 C_6}{3} + \frac{186 C_6}{3} - \frac
```

NNLL+NLO Results

Resummed results at NNLL+NLO:

Gluon Jets (From Higgs)

e⁺e⁻ EEC for small z (Q = M₂) 0.06 α_e = 0.118. n_f = 5. μ = Q NNL + NLO NLO NLO (exact) LO (exact) 0.03 0.04 0.05 0.1 0.15 0.2

Quark Jets (From e^+e^-)

- Distribution depends very sensitively on quark vs gluon!
- ullet A fun example: For an adjoint gluino in ${\cal N}=1$, there is no LL

$$\frac{z}{\sigma_0} \frac{d\Sigma_{NLL}^{\mathcal{N}=1}}{dz} = \frac{3}{2} C_A \frac{\alpha_s}{4\pi} + \left(-4\zeta_3 + \frac{1417}{72}\right) C_A^2 \left(\frac{\alpha_s}{4\pi}\right)^2 + \frac{(12\zeta_2 - 11)C_A^2 \left(\frac{\alpha_s}{4\pi}\right)^2}{(1 + 3C_A \frac{\alpha_s}{4\pi} \ln z)}$$

• Sufficiently sensitive to collinear structure to have a qualitatively different LL structure for gluino (C_A) and gluons (C_A) !

QCD@LHC 2019 July 16, 2019

27 / 42

FFC for Jet Substructure

- The EEC is a true collinear observable. It has a number of interesting properties for jet substructure:
 - It is single logarithmic.
 - Grooming does not modify the EEC. It is already groomed! \implies Massive simplification for calculations.
 - It is a very sensitive probe of initiating parton (e.g. quark vs. gluon). Beyond C_A vs. C_F Casimir scaling.
 - It connects with some of the most well computed QCD quantities (twist-2 anom. dims.) \implies extension to NNNLL in progress.

The Three Point Correlator

[Chen, Dixon, Luo, IM, Yang, Zhang, Zhu]

QCD@LHC 2019

Three Point Correlators

- Jet Substructure calculations have primarily focused on two-particle type correlations (e.g. mass).
- Higher point correlators encode more interesting information about the internal structure of jets.
 See Jesse Thaler's Talk
- The three point correlator is a function of two cross ratios, r_1 , r_2 :

 Overall scaling with size of triangle determined by twist 2 spin 4 anomalous dimension.

QCD@LHC 2019 July 16, 2019 30 / 42

Triangles, Symmetries and Functions

• Parametrize unit triangle using a complex variable z:

• Rigid analytic structure due to physical constraints:

• Lorentz group acts on celestial sphere as $SL(2,\mathbb{C}) \implies$ result transforms as a conformal primary.

QCD@LHC 2019 July 16, 2019 31 / 42

Jet Substructure and Hyperbolic Tetrahedra

• Result has an elegant interpretation: (Up to a few terms required to ensure behavior in limits) It is proportional to the volume in H_3 with points on the S_2 boundary (celestial sphere) at $(0,1,z,\infty)$

- Scale dependence of volume governed by twist-2 anomalous dimensions \implies beautiful geometric picture of jet substructure!
- Remarkable (unexplored) hidden simplicity in the substructure of jets hints extension to higher points possible.

QCD@LHC 2019 July 16, 2019 32 / 42

Multi-Particle Correlations

Multi-particle correlations under analytic control!

- Would be fascinating to measure.
- Interesting as a probe of parton shower beyond $1 \rightarrow 2$ splittings.

July 16, 2019 33 / 42

Extending Resummation Beyond Leading Power

[IM, Stewart, Vita, Zhu] [See also: Beneke et al., Magnea, Laenen et al.]

QCD@LHC 2019

Power Corrections for Event Shapes

- "Standard" factorization describes only leading term in $\tau \to 0$ limit.
- More generally, can consider expanding an observable in au

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \sum_{n=0}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^n \sum_{m=0}^{2n-1} c_{nm}^{(0)} \left(\frac{\log^m \tau}{\tau}\right)_+ \text{Leading Power (LP)}$$

$$+ \sum_{n=1}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^n \sum_{m=0}^{2n-1} c_{nm}^{(2)} \log^m \tau \qquad \text{Next to LP (NLP)}$$

$$+ \sum_{n=1}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^n \sum_{m=0}^{2n-1} c_{nm}^{(4)} \tau \log^m \tau + \cdots$$

$$= \frac{d\sigma^{(0)}}{d\tau} + \frac{d\sigma^{(2)}}{d\tau} + \frac{d\sigma^{(4)}}{d\tau} + \cdots$$

- Open problem in QFT how to systematically describe corrections.
- Use Renormalization Group techniques to understand structure.

July 16, 2019 35 / 42

An Immediate Practical Application

 Jet observables can be used to resolve singularities for fixed order calculations of cross sections:

Analytic NNLO calculation in singular limit

in resolved limit

• If $\frac{d\sigma(X)}{dT_N}$ can be computed as a power series, then this can enable efficient NNLO calculations for hadronic final states.

See talk by Markus Ebert

- Wilson lines are no longer sufficient at subleading powers.
- Can derive a complete basis of non-local gauge invariant operators which can decorate Wilson lines.

$$[Y_{n_i}^{(r)\dagger}iD_{us}^{(r)\mu}Y_{n_i}^{(r)}] \equiv T_{(r)}^a g \mathcal{B}_{us(i)}^{a\mu}, \qquad Y_{n_i}^{\dagger}q_{us} \equiv \psi_{us(i)}$$

• Objects of interest are matrix elements Wilson lines decorated with non-local $\mathcal{B}_{us(i)}^{a\mu}$ and $\psi_{us(i)}$ fields.

- This basis of operators allows factorization to be extended to any power in the soft and collinear expansion.
- Unlike at leading power functions are in general tied by a convolution along light cone directions:

$$\operatorname{tr} \langle \mathbf{0} | \mathcal{Y}_{\bar{n}}^T(x) \mathcal{Y}_{n}(x) \bar{\boldsymbol{n}} \cdot \mathcal{B}_{(n)}(x) \delta(\tau - \hat{\tau}) \mathcal{Y}_{n}^T(0) \mathcal{Y}_{\bar{n}}(0) | \mathbf{0} \rangle = \int \frac{d^4r}{(2\pi)^4} e^{-ir \cdot x} S_{LBK}(\tau, r)$$

- At tree level reproduces standard Low-Burnett-Kroll (LBK) theorem.
- Power suppressed logarithms associated with the LBK operator can be resummed by renormalization group evolution.

QCD@LHC 2019 July 16, 2019 38 / 42

Renormalization of LBK Operator

[IM, Stewart, Vita, Zhu]

 Renormalization of the LBK operator involves mixing into a new Wilson line operator:

$$S_{\theta}(\tau, \mu) = \operatorname{tr}\langle 0 | \mathcal{Y}_{\bar{n}}^{T}(0) \mathcal{Y}_{n}(0) \theta(\tau - \hat{\tau}) \mathcal{Y}_{n}^{T}(0) \mathcal{Y}_{\bar{n}}(0) | 0 \rangle$$

Leads to a 2 × 2 evolution equation.

$$\mu \frac{d}{d\mu} \begin{pmatrix} S_{LBK} \\ S_{\theta} \end{pmatrix} = \begin{pmatrix} \gamma_{LBK \to LBK} & \gamma_{LBK \to \theta} \\ 0 & \gamma_{\theta \to \theta} \end{pmatrix} \begin{pmatrix} S_{LBK} \\ S_{\theta} \end{pmatrix}$$

 Remarkably, the leading logarithms associated with the LBK operator exponentiate!

$$S_{LBK}(\tau,\mu) = \theta(\tau) \gamma_{LBK o heta} \log\left(rac{\mu}{ au}
ight) e^{rac{1}{2}rac{lpha_{
m s}}{4\pi} \Gamma^{
m g}_{
m cusp} \log^2\left(rac{\mu}{ au}
ight)}$$

QCD@LHC 2019

Subleading Power Resummation for Beam Thrust

- Allows for the resummation of power suppressed logarithms for hadron collider event shapes.
- e.g. Resummation for power suppressed contribrutions to beam thrust, τ_0 in $gg \to H$: [IM, Schunk, Stewart, Tackmann, Vita, Zhu]

$$\frac{d\sigma_{LL}^{(2)}}{dQ^{2}dYd\tau_{0}} = \hat{\sigma}^{LO}(Q) \left(\frac{\alpha_{s}}{4\pi}\right) 4C_{A}\theta(\tau_{0}) \log(\tau_{0}) e^{-\frac{\alpha_{s}}{4\pi}} 4C_{A} \log^{2}(\tau_{0}) \cdot \left[2f_{g}(x_{1})f_{g}(x_{2}) - x_{1}f_{g}'(x_{1})f_{g}(x_{2}) - f_{g}(x_{1})x_{2}f_{g}'(x_{2})\right]$$

- Beyond Leading Power, derivatives of the PDFs enter.
- Immediately predicts power suppressed terms for subtractions.
- Greatly extends scope of resummation based techniques beyond leading power, but much work to be done on general understanding of resummation at subleading powers.

July 16, 2019 40 / 42

Summary

 Simplicity of TEEC Allows Hadron Collider Dijet Event Shapes at NNNLL

 Jet Substructure Exhibits Remarkable Unexplored Simplicity

 Simplicity in Singular Limits Persists Beyond Leading Power

41 / 42

Thanks!